Renewable Energy: technologies and government policies

Presentation to the Women’s Engineering Society Annual Conference

4th October 2013

Gaynor Hartnell & Stephanie Merry
Renewable Energy Association
Overview of talk

- About the REA
- European and UK targets for Renewable Energy
 - 2001 Renewable Electricity Directive
 - 2009 Renewable Energy Directive
 - Post 2020 targets?
- Support mechanisms (for electricity)
 - NFFO
 - Renewables Obligation
 - Electricity Market Reform
- Current contributions to power generation
- The state of play with renewables technologies (with marine renewables in detail)
About the Rea

- Pan-technology trade association
- Heat, power generation and transport
- 950 corporate members
- Established 2001
- Magazine and flyer on the registration desk
RES Directive (the first one)

- RES = (Electricity from) Renewable Energy Sources
- An EU White paper (of 1997) set a target of 12% of gross inland energy consumption from renewables for the EU-15 by 2010, of which electricity would represent 22.1%
- The 2001 Directive put this into effect (for EU 15) and later with enlargement target reduced to 21%
- UK’s share was 10% renewable electricity by 2010
- Repealed by 2009 Renewable Energy Directive (the “RED”)
RES Directive 2001

<table>
<thead>
<tr>
<th>Country</th>
<th>% in 1997</th>
<th>target (%) in 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>1,1</td>
<td>6</td>
</tr>
<tr>
<td>Denmark</td>
<td>8,7</td>
<td>29</td>
</tr>
<tr>
<td>Germany</td>
<td>4,5</td>
<td>12,5</td>
</tr>
<tr>
<td>Greece</td>
<td>8,6</td>
<td>20,1</td>
</tr>
<tr>
<td>Spain</td>
<td>19,9</td>
<td>29,4</td>
</tr>
<tr>
<td>France</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>Ireland</td>
<td>3,6</td>
<td>13,2</td>
</tr>
<tr>
<td>Italy</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>2,1</td>
<td>5,7</td>
</tr>
<tr>
<td>Netherlands</td>
<td>3,5</td>
<td>9</td>
</tr>
<tr>
<td>Austria</td>
<td>70</td>
<td>78,1</td>
</tr>
<tr>
<td>Portugal</td>
<td>38,5</td>
<td>39</td>
</tr>
<tr>
<td>Finland</td>
<td>24,7</td>
<td>31,5</td>
</tr>
<tr>
<td>Sweden</td>
<td>49,1</td>
<td>60</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1,7</td>
<td>10,0</td>
</tr>
<tr>
<td>EU Community overall</td>
<td>13,9</td>
<td>22</td>
</tr>
</tbody>
</table>
The RED
(Renewable Energy Directive)

• Agreed in 2009, replaced the RES Directive
• EU(27) overall target 20% of gross inland energy consumption
• Of which transport comprises 10%
• Was part of the “20-20-20” package
 – A 20% reduction in GHG from 1990 levels
 – 20% EU energy consumption from renewables
 – A 20% improvement in the EU's energy efficiency
• UK target 15%
DECC’s expectations for achieving the 15% EU target

• Renewable heat: 12%
• Renewable transport fuels: 10%
• To make up the shortfall:

30% from renewable electricity!
A 2030 target?

- The EC is developing a 2030 framework climate change and energy policies.
- A Green Paper of March 2013 launched a public consultation on what the 2030 framework should contain
 - Continue as before (RE, EE and GHGs) or have a carbon only target?
 - What type, nature and level of climate and energy targets should be set for 2030?
 - How can coherence between different policy instruments be attained?
 - How can the energy system best contribute to EU competitiveness?
 - How can Member States' different capacities to act be taken into account?

- EC will conclude on this at end of 2013
- Discussion in spring summit in March 2014.
REA’s views

• Renewables are about more than carbon
• The previous package got it right
• Continue with separate renewable energy target for 2030, set at EU level but made up of mandatory national targets for all Member States
• Stick with a separate transport target
• REA did not suggest a target for 2030, although EREC called for 45%
Overview of support since 1990
1) Non Fossil Fuel Obligation

• Started in 1990, not influenced by Europe but by the need to assist with the privatisation of the Electricity Supply Industry. Nuclear was proving a hard sell
• shares many characteristics with the new arrangements which will be introduced following Electricity Market Reform
• Companies bid in their projects, giving the technology, the size (capacity) and the generation cost
• Winning projects would get a contract for 15 years – like EMR!
• Five rounds in total, last of which in 1998.
• Criticised for “picking winners”, but the policy initiated renewable energy industry and had much to commend it
Overview of support since 1990

2) The Renewables Obligation (RO)

- Started in 2002
- “Lean and mean as well as clean and green”....
- Aiming to avoid criticism of "picking winners"
- Certificate based system, with 1 RO Certificate per 1MWh
- Suppliers required to source increasing percentage of their power from renewables, leaving technology choice to market
- Frequent revisions, with banding introduced in 2009
- In effect it works like a “premium feed in tariff” with generators earning money for ROCs as well as for the power
- … power prices increasing… leading to criticism of not being good value for money
- In process of being phased out.... to be replaced by EMR
- However, it worked!
Overview of support since 1990

3) EMR and Contracts for Difference

• Horrendously complex!
• Degree of intervention never seen before….
• Its heart may be in the right place….
• Could have been achieved by a large NFFO
High level summary

<table>
<thead>
<tr>
<th>Non Fossil Fuel Ob. (NFFO)</th>
<th>Renewables Ob. (RO)</th>
<th>Contracts for Diff. (CfDs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500 MW capacity</td>
<td>5% by 2003</td>
<td>Decarbonisation and remaining push to meet RED</td>
</tr>
<tr>
<td></td>
<td>10% by 2010 (later extended)</td>
<td></td>
</tr>
<tr>
<td>Not Europe-driven</td>
<td>Europe-driven</td>
<td>Carbon-driven</td>
</tr>
<tr>
<td>Assistance to nuclear</td>
<td>Meeting RES and RED</td>
<td>Assistance to nuclear?</td>
</tr>
<tr>
<td>Competitive bidding</td>
<td>Administered prices</td>
<td>Administered prices, then competition</td>
</tr>
<tr>
<td>15 year contracts</td>
<td>20 year entitlement to certificates</td>
<td>15 year contracts</td>
</tr>
</tbody>
</table>

Assistance to nuclear?
Government strategy

- Renewable Energy Strategy 2009
- 2011 Renewable energy roadmap, July 2011
- December 2012 update
- Reported on actions in the 2011 document … “72 of the 110 actions set out there are now complete and we have made good progress on the remaining 38”
- Solar PV is now identified as a key technology
- Key priorities will be to introduce the domestic RHI, implement the RO banding review, legislate for EMR and set strike prices for the new CfDs.
Anticipated contributions

the Government view

Renewable Energy Roadmap 2011

<table>
<thead>
<tr>
<th>Technology breakdown (TWh) for central view of deployment in 2020</th>
<th>TWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onshore wind</td>
<td>24-32 TWh</td>
</tr>
<tr>
<td>Offshore wind</td>
<td>33-58 TWh</td>
</tr>
<tr>
<td>Biomass electricity</td>
<td>32-50 TWh</td>
</tr>
<tr>
<td>Marine</td>
<td>1 TWh</td>
</tr>
<tr>
<td>Biomass heat (non-domestic)</td>
<td>36-50 TWh</td>
</tr>
<tr>
<td>Air-source and Ground-source heat pumps (non-domestic)</td>
<td>16-22 TWh</td>
</tr>
<tr>
<td>Renewable transport</td>
<td>Up to 48TWh</td>
</tr>
<tr>
<td>Others (including hydro, geothermal, solar and domestic heat)</td>
<td>14 TWh</td>
</tr>
<tr>
<td>Estimated 15% target</td>
<td>234 TWh</td>
</tr>
</tbody>
</table>
Current Generation

Data from 08:50 on 2 October 2013 (5 min. averages).

- Combined Cycle Gas Turbine: 27.1% (10,510 MW)
- Nuclear: 19.3% (7,472 MW)
- Other: 0.1% (43 MW)

- Open Cycle Gas Turbine: 0.0% (0 MW)
- Wind: 9.7% (3,755 MW)
- French Interconnector: 2.2% (841 MW)

- Oil: 0.0% (0 MW)
- Pumped Storage Hydro: 1.0% (386 MW)
- Irish Interconnector: 0.0% (0 MW)

- Coal: 38.0% (14,747 MW)
- Non-Pumped Storage Hydro: 0.9% (351 MW)
- Dutch Interconnector: 1.7% (667 MW)

Total Generation: 38,772 MW
Onshore wind

- 4026 turbines, 6565MW capacity operational
- 655 turbines, 1572 MW capacity under construction, weighted average turbine size 2.4MW
- 1988 turbines, 4830 MW consented
- Only technology with community benefit protocol, £5k/MW/year
Offshore wind

- 1075 turbines (largest 6MW) 3653 MW operational, weighted average size 3.6MW
- 4 projects currently under construction (incl 1 x7MW test turbine) 1.GW capacity, 3GW consented
- Generation cost challenge “Based on the evidence gathered and assuming our recommendations are followed, the CRTF concludes offshore wind can reach £100/MWh by 2020.”
Biomass

- Lots of different fuels and types
- Large contribution anticipated, but mostly co-firing or conversion, and regarded as temporary
- Controversial
- 400MW cap on new dedicated plant recently introduced
Sources of Marine Energy

• Tidal Power
• Wave Power
• Ocean Thermal Energy Conversion (OTEC)
• Salinity Gradients
Tidal Energy

• The “pull” of the moon (and sun) on oceanic waters causes:
 – Tidal height changes
 – Tidal flows of water
Tidal Barrage: La Rance

- 24 turbines
- Total generation 240 MW
- Operates on ebb and flood
- Has operated successfully for 40 years
Hafren Power
Proposed Severn Barrage

- Lavernock Point to Brean (18 km)
- Generates on ebb and flood
- Annual output: ~ 16.5 TWh or 5% of UK consumption
- Cost undisclosed but > £26 billion
UK Tidal Stream Resource

- 50% of Europe’s resource
- 10-15% of global resource
- 12 TWh / year exploitable now
- In long term, 3-5% of current UK energy demand
UK: acknowledged global leader in marine renewable energy

- Test facilities
 - EMEC
 - Wavehub
 - NaREC
- Supportive government policies
- Creative engineers
- Transferable skills from offshore O&G
- Pentland Firth and Orkney Waters leasing round
Tidal energy devices, clockwise from top right: Alstom, Andriz Hydro Hammerfest, Atlantis, Seagen
Seagen: a UK world first!

- 1.2 MW twin turbines
- Power first delivered to the grid in July 2008
- Has now exceeded 8 GWh generation
- Accredited as a UK generating station by Ofgem and is eligible for ROCs
Scotrenewables Tidal Turbine

- Installed at EMEC, March 2011
- Floating cylindrical tube with 2 horizontal axis rotors – 250 kW
- Two configurations:
 - operational with the rotors down
 - survivability mode with rotors retracted
Open Hydro Tidal Turbine

- Installed at the European Marine Energy Centre, Jan 2007
- 250 kW, open-centre turbine with permanent magnet generator in rim
The next stage - arrays of tidal devices

- To identify:
 - Interactions between devices / electricity export
 - Cumulative environmental impacts

- Projects:
 - Scottish Power Renewables, Islay: 4 Andriz Hydro Hammerfest and 4 Alstom devices (10MW)
 - Seagen Kyle Rhea: 8MW
 - Seagen Anglesey: 10MW
Wave Power

- Concentrated form of solar energy
- Solar power 100 W per square metre
- Wave power 70 kW per metre of crest length
UK Wave Energy Resource

- 35% of Europe’s resource
- Less location-dependent than tidal resource
- In long term, 10-15% of current UK energy demand
Wave energy devices, clockwise from top left:
Oyster, Pelamis, PB150, Limpet
Oyster – hinged flap device

- Flap drives pistons that push high-pressure water ashore to drive turbines
- Oyster 315 kW installed at EMEC in 2009
- Oyster 800 deployed at EMEC 2011
Pelamis Development

- 750 kW machine tested at EMEC in 2004
- 2.25 MW wave farm installed off the coast of Portugal in 2008
- Testing two P2 machines at EMEC
Limpet – first grid-connected wave generator

- Shore-based generator, installed on the coast of Islay in 2000
- Oscillating water column drives air through contra-rotating twin turbines
- 0.5MW of power for local communities
The next stage - arrays of wave devices

- Projects:
 - Aegir, Shetlands: 10MW, up to 14 Pelamis devices
 - West coast of Lewis: 10MW and 30MW, up to 40 Oyster devices
- As Stage 1 of Pentland and Orkney Waters leasing round:
 - Four Point (Pelamis) : 7.5 MW
 - Brough Head (Oyster): eventually 200MW
Wave and Tidal Energy versus Wind

Advantages:

- Higher energy density: water is 830 times denser than air
- More predictable energy resource and capture
- Tidal has a totally predictable energy schedule
- Low visual impact
Conclusions

• Forgive the focus on power generation!
• Some renewables starting to achieve grid parity in some places, and this trend will continue
• UK does not provide good case study for RE support
• EMR will mean renewables, nuclear and CCS competing as low carbon options
• Renewables should fare well, but timing is not helpful for marine renewables
• Overall outlook extremely encouraging
Thank you for listening

Renewable Energy Association
www.r-e-a.net